Linear interpolation
Pulses are output from two channels in accordance with the parameters in the function block and in the specified DUT, so that the path to the target position forms a straight line. Pulses are output from the specified channel when the control flag for this channel is FALSE and the execution condition is TRUE.
Input
Execution condition can be:
with edge trigger
permanent, if change of speed is required.
Absolute value control = TRUE, Relative value control = FALSE
Initial and final speed: Composite speed = 1–50000 (1Hz–50kHz)
Target speed: Composite speed = 1–50000 (1Hz–50kHz)
Acceleration/deceleration time (FPS, FP-X): 0ms–32767ms
Acceleration time (F171_PulseOutput_Trapezoidal): 0ms–32767ms
Deceleration time (F171_PulseOutput_Trapezoidal): 0ms–32767ms
X-axis target value[pulses]-8388608–8388607
Y-axis target value[pulses]-8388608–8388607
Output
TRUE if an applied input value is invalid. Execution of the function block stops.
Is set only if global constant MC_PulseOutput_Library_Basic_bCheckInputs is set to TRUE.
X-axis initial and final speed[Hz]
X-axis target speed[Hz]
Y-axis initial and final speed[Hz]
Y-axis target speed[Hz]
This non-inline instruction is part of the tool instructions for pulse output. For a detailed description of the instruction(s) used internally, please refer to:F175_PulseOutput_Linear
Use PulseInfo_IsActive to check if the control flag for the selected channel is FALSE.
With a Data Unit Type (DUT) you can define a data unit type that is composed of other data types. A DUT is first defined in the DUT pool and then processed like the standard data types (BOOL, INT, etc.) in the list of global variables or the POU header.
All input and output variables used for programming this function have been declared in the POU header. The same POU header is used for all programming languages.
VAR
PulseOutput_Linear: PulseOutput_Linear_FB;
bExecute: BOOL:=FALSE;
bAbsolute: BOOL:=FALSE;
ChannelConfiguration_XY_DUT: PulseOutput_Channel_Configuration_DUT;
bError: BOOL:=FALSE;
rInitialAndFinalSpeed_X: REAL:=0;
rTargetSpeed_X: REAL:=0;
rInitialAndFinalSpeed_Y: REAL:=0;
rTargetSpeed_Y: REAL:=0;
AdditionalOutputs_DUT: PulseOutput_Linear_AdditionalOutputs_DUT;
bConfigureDUT: BOOL:=FALSE;
@'': @'';
END_VAR
BODY
WORKSPACE
NETWORK_LIST_TYPE := NWTYPELD ;
ACTIVE_NETWORK := 0 ;
END_WORKSPACE
NET_WORK
NETWORK_TYPE := NWTYPELD ;
NETWORK_LABEL := ;
NETWORK_TITLE := ;
NETWORK_HEIGHT := 31 ;
NETWORK_BODY
B(B_CONTACT,,bConfigureDUT,6,1,8,3,);
B(B_F,E_MOVE!,,17,0,23,4,,?DEN?D?AENO?C);
B(B_VARIN,,1,15,2,17,4,);
B(B_F,E_MOVE!,,17,8,23,12,,?DEN?D?AENO?C);
B(B_VARIN,,FALSE,15,10,17,12,);
B(B_VAROUT,,ChannelConfiguration_XY_DUT.bOutput_Pulse_ForwardFalse,23,10,25,12,);
B(B_F,E_MOVE!,,17,12,23,16,,?DEN?D?AENO?C);
B(B_F,E_MOVE!,,17,4,23,8,,?DEN?D?AENO?C);
B(B_VARIN,,TRUE,15,6,17,8,);
B(B_VAROUT,,ChannelConfiguration_XY_DUT.bOutput_Pulse_ForwardTrue,23,6,25,8,);
B(B_VARIN,,TRUE,15,14,17,16,);
B(B_VAROUT,,ChannelConfiguration_XY_DUT.iChannel,23,2,25,4,);
B(B_F,E_MOVE!,,17,16,23,20,,?DEN?D?AENO?C);
B(B_VARIN,,FALSE,15,18,17,20,);
B(B_VAROUT,,ChannelConfiguration_XY_DUT.bDutyRatio25,23,18,25,20,);
B(B_VAROUT,,ChannelConfiguration_XY_DUT.bAccelerationSteps60,23,14,25,16,);
B(B_VAROUT,,ChannelConfiguration_XY_DUT.bFrequencyRange_191Hz_100kHz,23,22,25,24,);
B(B_VARIN,,TRUE,15,22,17,24,);
B(B_F,E_MOVE!,,17,20,23,24,,?DEN?D?AENO?C);
B(B_F,E_MOVE!,,17,24,23,28,,?DEN?D?AENO?C);
B(B_VARIN,,TRUE,15,26,17,28,);
B(B_VAROUT,,ChannelConfiguration_XY_DUT.bExecuteInInterrupt,23,26,25,28,);
L(8,2,17,2);
L(12,18,17,18);
L(12,14,17,14);
L(12,10,17,10);
L(12,6,17,6);
L(12,2,12,18);
L(12,18,12,22);
L(12,22,17,22);
L(12,22,12,26);
L(12,26,17,26);
L(1,2,6,2);
L(1,0,1,31);
END_NETWORK_BODY
END_NET_WORK
NET_WORK
NETWORK_TYPE := NWTYPELD ;
NETWORK_LABEL := ;
NETWORK_TITLE := ;
NETWORK_HEIGHT := 12 ;
NETWORK_BODY
B(B_FB,PulseOutput_Linear_FB!,PulseOutput_Linear,15,1,33,12,,?BbExecute?BbAbsolute?BdiInitialAndFinalSpeed?BdiTargetSpeed?BdiAccelerationTime?BdiDecelerationTime?BdiTargetValue_X?BdiTargetValue_Y?BdutChannelConfiguration_X_Y?AbError?ArInitialAndFinalSpeed_X?ArTargetSpeed_X?ArInitialAndFinalSpeed_Y?ArTargetSpeed_Y?AdutAdditionalOutputs);
B(B_VARIN,,bExecute,13,2,15,4,);
B(B_VARIN,,bAbsolute,13,3,15,5,);
B(B_VARIN,,600,13,4,15,6,);
B(B_VARIN,,12000,13,5,15,7,);
B(B_VARIN,,300,13,6,15,8,);
B(B_VARIN,,600,13,7,15,9,);
B(B_VARIN,,1000,13,8,15,10,);
B(B_VARIN,,2000,13,9,15,11,);
B(B_VARIN,,ChannelConfiguration_XY_DUT,13,10,15,12,);
B(B_VAROUT,,bError,33,2,35,4,);
B(B_VAROUT,,rInitialAndFinalSpeed_X,33,3,35,5,);
B(B_VAROUT,,rTargetSpeed_X,33,4,35,6,);
B(B_VAROUT,,rInitialAndFinalSpeed_Y,33,5,35,7,);
B(B_VAROUT,,rTargetSpeed_Y,33,6,35,8,);
B(B_VAROUT,,AdditionalOutputs_DUT,33,7,35,9,);
L(1,0,1,12);
END_NETWORK_BODY
END_NET_WORK
END_BODY
(* Used DUT parameters *)
ChannelConfiguration_XY_DUT.iChannel := 1;
ChannelConfiguration_XY_DUT.bOutput_Pulse_ForwardTrue := TRUE;
ChannelConfiguration_XY_DUT.bOutput_Pulse_ForwardFalse := FALSE;
ChannelConfiguration_XY_DUT.bAccelerationSteps60 := FALSE;
ChannelConfiguration_XY_DUT.bDutyRatio25 := TRUE;
ChannelConfiguration_XY_DUT.bFrequencyRange_191Hz_100kHz := TRUE;
ChannelConfiguration_XY_DUT.bExecuteInInterrupt := FALSE;
(* FB *)
PulseOutput_Linear(bExecute := bExecute,
bAbsolute := bAbsolute,
diInitialAndFinalSpeed := 600,
diTargetSpeed := 12000,
diAccelerationTime := 300,
diDecelerationTime := 600,
diTargetValue_X := 150000,
diTargetValue_Y := 10000,
dutChannelConfiguration_X_Y := ChannelConfiguration_XY_DUT,
bError => bError,
diInitialAndFinalSpeed_X => diInitialAndFinalSpeed_X,
diTargetSpeed_X => diTargetSpeed_X,
diInitialAndFinalSpeed_Y => diInitialAndFinalSpeed_Y,
diTargetSpeed_Y => diTargetSpeed_Y,
dutAdditionalOutputs => AdditionalOutputs_DUT);